1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
use {
crate::{
memory::{
hypervisor_mmu_update, MachineFrameNumber, PageEntry, PageFrameNumber, PhysicalAddress,
VirtualAddress,
},
platform::consts::{
L1_PAGETABLE_ENTRIES, L1_PROT, PAGETABLE_LEVELS, PAGE_MASK, PAGE_PRESENT, PAGE_RW,
PAGE_SHIFT, PAGE_SIZE, PT_PROT,
},
xen_sys::{mmu_update_t, __HYPERVISOR_VIRT_START},
},
core::{mem::size_of, ptr},
log::{debug, trace},
};
pub unsafe fn build(
pt_base: *mut PageEntry,
start_pfn: PageFrameNumber,
max_pfn: PageFrameNumber,
) -> (VirtualAddress, usize) {
let mut current_pt_pfn = start_pfn;
let mut mmu_updates = [mmu_update_t { ptr: 0, val: 0 }; L1_PAGETABLE_ENTRIES + 1];
let mut mmu_updates_index = 0;
if max_pfn >= PageFrameNumber::from(VirtualAddress(__HYPERVISOR_VIRT_START as usize)) {
panic!("Maximum page frame number overlaps with Xen virtual space");
}
let start_address = VirtualAddress::from(start_pfn);
let end_address = VirtualAddress::from(max_pfn);
debug!(
"Mapping memory range {:#x} - {:#x}",
start_address.0, end_address.0
);
for (address, pfn_to_map) in (start_address.0..end_address.0)
.step_by(PAGE_SIZE)
.map(|a| VirtualAddress(a))
.zip((start_pfn.0..).map(|n| PageFrameNumber(n)))
{
let l3_page = {
let l4_table = pt_base;
let pt_mfn =
MachineFrameNumber::from(VirtualAddress(pt_base as *const PageEntry as usize));
let offset = address.l4_table_offset();
let page = l4_table.offset(offset);
if (*page).0 & PAGE_PRESENT == 0 {
new_frame(pt_base, current_pt_pfn, pt_mfn, offset, 3);
current_pt_pfn.0 += 1;
}
*page
};
let l2_page = {
let pt_mfn = MachineFrameNumber::from(l3_page);
let l3_table = VirtualAddress::from(PhysicalAddress(
PageFrameNumber::from(pt_mfn).0 << PAGE_SHIFT,
))
.0 as *mut PageEntry;
let offset = address.l3_table_offset();
let page = l3_table.offset(offset);
if (*page).0 & PAGE_PRESENT == 0 {
new_frame(pt_base, current_pt_pfn, pt_mfn, offset, 2);
current_pt_pfn.0 += 1;
}
*page
};
let l1_page = {
let pt_mfn = MachineFrameNumber::from(l2_page);
let l2_table = VirtualAddress::from(PhysicalAddress(
PageFrameNumber::from(pt_mfn).0 << PAGE_SHIFT,
))
.0 as *mut PageEntry;
let offset = address.l2_table_offset();
let page = l2_table.offset(offset);
if (*page).0 & PAGE_PRESENT == 0 {
new_frame(pt_base, current_pt_pfn, pt_mfn, offset, 1);
current_pt_pfn.0 += 1;
}
*page
};
{
let pt_mfn = MachineFrameNumber::from(l1_page);
let l1_table = VirtualAddress::from(PhysicalAddress(
PageFrameNumber::from(pt_mfn).0 << PAGE_SHIFT,
))
.0 as *mut PageEntry;
let offset = address.l1_table_offset();
if ((*l1_table.offset(offset)).0 & PAGE_PRESENT) == 0 {
mmu_updates[mmu_updates_index].ptr =
((pt_mfn.0 << PAGE_SHIFT) + size_of::<PageEntry>() * offset as usize) as u64;
mmu_updates[mmu_updates_index].val =
(MachineFrameNumber::from(pfn_to_map).0 << PAGE_SHIFT | L1_PROT) as u64;
mmu_updates_index += 1;
}
}
if mmu_updates_index == L1_PAGETABLE_ENTRIES
|| (mmu_updates_index != 0 && pfn_to_map == max_pfn)
{
hypervisor_mmu_update(&mmu_updates[..mmu_updates_index])
.expect("PTE could not be updated");
mmu_updates_index = 0;
}
}
let heap_start = VirtualAddress::from(current_pt_pfn);
let size = end_address.0 - heap_start.0;
(heap_start, size)
}
pub unsafe fn new_frame(
l4_table: *mut PageEntry,
pt_pfn: PageFrameNumber,
prev_l_mfn: MachineFrameNumber,
offset: isize,
level: usize,
) {
let pt_page = VirtualAddress::from(pt_pfn);
let mut mmu_updates = [mmu_update_t { ptr: 0, val: 0 }; 1];
trace!(
"Allocating new L{} page table frame for pfn={}, prev_l_mfn={}, offset={}",
level,
pt_pfn.0,
prev_l_mfn.0,
offset
);
ptr::write_bytes(pt_page.0 as *mut u8, 0, PAGE_SIZE);
assert!(level >= 1 && level <= PAGETABLE_LEVELS);
let l3_table =
VirtualAddress::from(*l4_table.offset(pt_page.l4_table_offset())).0 as *mut PageEntry;
let l2_table =
VirtualAddress::from(*l3_table.offset(pt_page.l3_table_offset())).0 as *mut PageEntry;
mmu_updates[0].ptr = (((*l2_table.offset(pt_page.l2_table_offset())).0 & PAGE_MASK)
+ size_of::<PageEntry>() * pt_page.l1_table_offset() as usize)
as u64;
mmu_updates[0].val = ((MachineFrameNumber::from(pt_pfn).0 << PAGE_SHIFT)
| (PT_PROT[level - 1] & !PAGE_RW)) as u64;
hypervisor_mmu_update(&mmu_updates).expect("PTE for new page table page could not be updated");
mmu_updates[0].ptr =
((prev_l_mfn.0 << PAGE_SHIFT) + size_of::<PageEntry>() * offset as usize) as u64;
mmu_updates[0].val = (MachineFrameNumber::from(pt_pfn).0 << PAGE_SHIFT | PT_PROT[level]) as u64;
hypervisor_mmu_update(&mmu_updates).expect("PTE insertion into hierarchy failed");
}